Эффективность применения лазерной сварки металлов

Лазерная сварка – это процесс, при котором металл нагревается до температуры плавления лазерным лучом, подающимся посредством оптического квантового генератора (ОКГ), и представляющим собой вынужденное монохроматическое излучение. Существует общепринятое обозначение метода: LBW (Laser Beam Welding) – понятие, переводимое, как сварка лазерным лучом.Сварка лазером

Краткое описание процесса

Суть метода лазерной сварки, как термического процесса получения неразъемного соединения металлических деталей, заключается в местном расплавлении материала, который впоследствии кристаллизируется. Во время затвердевания атомы материалов устанавливают прочную химическую связь, которая соответствует типу кристаллической решетки и природе свариваемых элементов.

Энергия излучения, которая поглощается материалами в диапазоне воздействия концентрированного лазерного луча, является источником тепловой энергии, активирующей поверхности свариваемых металлов.

Важно знать! Чем выше концентрация световой энергии на определенном участке, тем выше температура

Применение лазерной сварки

Лазерная сварка металлов широко применяется в приборостроении и машиностроении. По глубине проплавления различают:

  • микросварку, соединяющую элементы толщиной менее 100 мкм;
  • мини сварку, проплавляющую детали толщиной от 0,1 до 1 мм;
  • макро сварка, глубина проплавления которой больше 1 мм.

В первых двух случаях, наиболее распространенных в промышленном производстве, применяется специальное оборудование – импульсные лазеры, в которых удачно сочетаются основные свойства излучения, необходимые для выполнения локального соединения.

ТаблицаКлючевыми моментами лазерной сварки являются:

  • мощь излучения;
  • показатель диаметра пятна фокусировки;
  • скорость перемещения обрабатываемых участков относительно луча.

Преимущества сварки лазером

  1. Очень точная дозировка энергии, благодаря которой получаются высококачественные соединения мельчайших деталей, является самым важным преимуществом лазерной сварки твердотельными лазерами.
  2. С помощью мощных газовых лазеров можно получить глубокое проплавление узкого шва, что значительно сокращает зону термического воздействия и снижает уровень сварочного напряжения и деформаций.
  3. Сварочные работы можно проводить лазером, который находится на достаточно большом расстоянии от места выполнения соединений, что считается экономически эффективным.
  4. Зеркала и оптоволокно позволяют с легкостью управлять лазерным лучом, что дает возможность выполнить сварные работы в труднодоступных и удаленных из зоны видимости местах.
  5. Существует возможность соединения нескольких конструкций. Выполняется это лучом одного лазера, расщепленным с помощью призм.

Лазерная сварка своими руками – это экономически эффективный процесс, обеспечивающий высококачественные сварные соединения за сравнительно короткое время.

Эффективность технологии

Так как КПД преобразования световой энергии в лазерное излучение достаточно низок, то технология сварки построена в основном на соединении поверхностей до 1 мм толщиной. Основными элементами стандартной типовой установки являются генератор накачки и активная среда.

Основываясь на этом, проводится разделение лазера на несколько видов:

  • полупроводниковый;
  • твердотельный;
  • газовый.

Средой активности для твердотельного лазера является стержень из розового рубина. Благодаря своей выходной мощи луч концентрирует в фокусе огромную энергию, а температура достигает 1000000 градусов. Недостатком устройства является низкий КПД, менее 2% при работе в импульсном режиме. Лазеры, работающие в непрерывном режиме, обладают более высоким КПД и мощью.

Среда активностиСреда активности для газового лазера – это углеродистые газы или газовые смеси. Генератором накачки обычно является искровой разрядник, либо электронные лучи. Их преимуществом считают КПД и мощь, которые выше твердотельного. Газовый лазер функционирует в непрерывном и импульсном режимах.

Стоимость технологичных лазеров достаточно высока. Улучшить процесс и результат лазерной сварки можно, совместив источник лазерного нагрева с менее дорогостоящими источниками энергии.

Например, лазерно-дуговая сварки имеет хорошую перспективу, как процесс, в котором итоговый показатель проплавления оказался намного выше, чем результаты каждого отдельного источника: дуги и лазера.

Особенности свариваемых металлов: нюансы и рекомендации

Лазерная сварка некоторых металлов имеет свои особенности, о которых необходимо знать новичкам.

  1. Нержавеющая сталь: высокая скорость кристаллизации металла сварного шва, а также ОШЗ при предельных температурах. Рекомендуется: лазерная сварка высокой производительности на максимальных скоростях.
  2. Алюминий: в связи с высокой теплопроводностью металла, требуется максимальное количество энергии. Рекомендуется: тщательная подготовка поверхности перед началом сварки, удаление загрязнений, механическая обработка кромок деталей.
  3. Алюминиевые сплавы: требуется дополнительная защита швов от окисления. Рекомендуется: газовая защита.
  4. Титан: рост зерна при экстремальных температурах, появление холодных трещин. Рекомендуется: источник нагрева – луч лазера, очищение и механическая обработка свариваемых поверхностей, подгонка деталей.

Лазерная сварка, являясь дорогостоящим методом, считается наиболее эффективной тогда, когда традиционные сварочные технологии не дают нужного результата или их проведение технически невозможно.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*